HOME     FACULTY     Full List     Text
Name:Jing Ren
Birthday: 1987-06
Professional Title:Associate Professor
Department:applied chemistry
Education:doctor
Dr. Supervisor/Ms. Supervisor:Ms. Supervisor
Adress:Knowledgeable building
Email:renjing02@tyut.edu.cn
Biography
Course: General Chemistry
Education and Teaching
1.Paper

[1] J. Ren, R.-P. Ren*, Y.-K. Lv*, A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chemical Engineering Journal, 2018, 353: 419-424.

[2] J. Ren, R.-P. Ren*, Y.-K. Lv*, Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam. Chemical Engineering Journal, 2018, 349: 111-118.

[3] J. Ren, F. Yang, Z. Wang, R.-P. Ren*, Y.-K. Lv*, Freestanding 3D single-wall carbon nanotubes/WS2 nanosheets foams as ultra-long-life anodes for rechargeable lithium ion batteries, Electrochimica Acta, 2018, 267: 133-140.

[4] J. Ren, R.-P. Ren*, Y.-K. Lv*, A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design. Chemistry-An Asian Journal, 2018, 13 (9): 1223-1227.

[5] J. Ren, R.-P. Ren*, Y.-K. Lv*, WS2-decorated graphene foam@CNTs hybrid anode for enhanced lithium-ion storage, Journal of Alloys Compounds, 2019, 784: 697-703.

[6] J. Ren, X. Du, W. Zhang, M. Xu*,From wheat bran derived carbonaceous materials to a highly stretchable and durable strain sensor,RSC Advances. 2017, 7 (37): 22619-22626.

[7] J. Ren, W. Zhang, Y. Wang, Y. Wang, J. Zhou, L. Dai, M. Xu*, A Graphene Rheostat for Highly Durable and Stretchable Strain Sensor, InfoMat, 2019: 1–11.

[8] Y. Wang, Ren J., Gao X., Zhang W., Duan H., Wang M., Shui J., Xu M. Self-adaptive electrode with SWCNT bundles as elastic substrate for high-rate and long-cycle-life lithium/sodium ion batteries, Small, 2018, 14 (47): 1802913.

[9] J. Ren, R.-P. Ren*, Y.-K. Lv*, Hollow spheres constructed by ultrathin SnS sheets for enhanced lithium storage, Journal of Materials Science, 2020, 55: 7492–7501.

[10] J. Ren, R.-P. Ren*, Y.-K. Lv*, Hollow I-Cu2MoS4 nanocubes coupled with an ether-based electrolyte for highly reversible lithium storage, Journal of Colloid and Interface Science, 2020, 577, 86-91.

2. Projects

Shanxi Province Science Foundation for Youths (RD2000002002).
Scientific Research